Header menu link for other important links
Real-time implementation of GPS aided low-cost strapdown inertial navigation system
Sahawneh L.R., Al-Jarrah M.A., , Abdel-Hafez M.F.
Published in Springer
Volume: 61
Issue: 1-4
Pages: 527 - 544
This work details the study, development, and experimental implementation of GPS aided strapdown inertial navigation system (INS) using commercial off-the-shelf low-cost inertial measurement unit (IMU). The data provided by the inertial navigation mechanization is fused with GPS measurements using loosely-coupled linear Kalman filter implemented with the aid of MPC555 microcontroller. The accuracy of the estimation when utilizing a low-cost inertial navigation system (INS) is limited by the accuracy of the sensors used and the mathematical modeling of INS and the aiding sensors' errors. Therefore, the IMU data is fused with the GPS data to increase the accuracy of the integrated GPS/IMU system. The equations required for the local geographic frame mechanization are derived. The direction cosine matrix approach is selected to compute orientation angles and the unified mathematical framework is chosen for position/velocity algorithm computations. This selection resulted in significant reduction in mechanization errors. It is shown that the constructed GPS/IMU system is successfully implemented with an accurate and reliable performance. © 2010 Springer Science+Business Media B.V.
About the journal
JournalData powered by TypesetJournal of Intelligent & Robotic Systems
PublisherData powered by TypesetSpringer
Open AccessNo