Header menu link for other important links
X
Performance analysis and optimization of a parabolic trough solar power plant in the middle east region
R.P. Praveen, M.A. Baseer, , M. Zubair
Published in MDPI AG
2018
Volume: 11
   
Issue: 4
Abstract
The Middle East is one among the areas of the world that receive high amounts of direct solar radiation. As such, the region holds a promising potential to leverage clean energy. Owing to rapid urbanization, energy demands in the region are on the rise. Along with the global push to curb undesirable outcomes such as air pollution, emissions of greenhouse gases, and climate change, an urgent need has arisen to explore and exploit the abundant renewable energy sources. This paper presents the design, performance analysis and optimization of a 100 MWe parabolic trough collector Solar Power Plant with thermal energy storage intended for use in the Middle Eastern regions. Two representative sites in the Middle East which offer an annual average direct normal irradiance (DNI) of more than 5.5 kWh/m2/day has been chosen for the analysis. The thermodynamic aspect and annual performance of the proposed plant design is also analyzed using the System Advisor Model (SAM) version 2017.9.5. Based on the analysis carried out on the initial design, annual power generated from the proposed concentrating solar power (CSP) plant design in Abu Dhabi amounts to 333.15 GWh whereas that in Aswan recorded a value of 369.26 GWh, with capacity factors of 38.1% and 42.19% respectively. The mean efficiency of the plants in Abu Dhabi and Aswan are found to be 14.35% and 14.98% respectively. The optimization of the initial plant design is also carried out by varying two main design parameters, namely the solar multiple and full load hours of thermal energy storage (TES). Based on the findings of the study, the proposed 100 MW parabolic trough collector solar power plant with thermal energy storage can contribute to the sustainable energy future of the Middle East with reduced dependency on fossil fuels. © 2018 by the authors.
About the journal
JournalEnergies
PublisherMDPI AG
ISSN19961073