Header menu link for other important links
MGA-TSP: Modernised genetic algorithm for the travelling salesman problem
R.M. Al-Khatib, , M.A. Awadallah, K.M.O. Nahar, M.M. Abu Shquier, A.M. Manasrah, A.B. Doumi
Published in Inderscience Enterprises Ltd.
Volume: 11
Issue: 3
Pages: 215 - 226
This paper proposes a new enhanced algorithm called modernised genetic algorithm for solving the travelling salesman problem (MGA-TSP). Recently, the most successful evolutionary algorithm used for TSP problem, is GA algorithm. The main obstacles for GA is building its initial population. Therefore, in this paper, three neighbourhood structures (inverse, insert, and swap) along with 2-opt is utilised to build strong initial population. Additionally, the main operators (i.e., crossover and mutation) of GA during the generation process are also enhanced for TSP. Therefore, powerful crossover operator called EAX is utilised in the proposed MGA-TSP to enhance its convergence. For validation purpose, we used TSP datasets, range from 150 to 33,810 cities. Initially, the impact of each neighbouring structure on the performance of MGA-TSP is studied. In conclusion, MGA-TSP achieved the best results. For comparative evaluation. MGA-TSP is able to outperform six comparative methods in almost all TSP instances used. Copyright © 2019 Inderscience Enterprises Ltd.
About the journal
JournalInternational Journal of Reasoning-based Intelligent Systems
PublisherInderscience Enterprises Ltd.