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Abstract: This paper introduces a general solution of singular fractional-order linear-time invariant

(FoLTI) continuous systems using the Adomian Decomposition Method (ADM) based on the Caputo's

definition of the fractional-order derivative. The complexity of their entropy lies in defining the

complete solution of such systems, which depends on introducing a method of decomposing their

dynamic states from their static states. The solution is formulated by converting the singular system

of regular pencils into a recursive form using the sequence of transformations, which separates the

dynamic variables from the algebraic variables. The main idea of this work is demonstrated via

numerical examples.

Keywords: fractional calculus; Adomian decomposition; Mittag–Leffler function; descriptor

fractional linear systems; regular pencils; Schur factorization

1. Introduction

A dynamical system represented by differential equations with non-integer order derivatives

is denoted as a fractional-order system. In general, most practical systems are best described by

fractional-order dynamics (FoD), where the integer-order representation of such systems is considered

as a special case. Recently, different types of problems of fractional-order dynamical systems have been

considered in the literature [1,2]. Time-domain system identification using the fractional-order models

was initiated in the late nineties. Several methods of discretizing the fractional-order differential equation

using Grunwald–Letnikov (GL) approximation or phase assignment technique can be found in [3,4],

while another biquadratic approximation of the fractional-order Laplacian operator based on the flatness

of the phase frequency response at its center frequency is discussed in [5]. Furthermore, the state–space

representations of fractional-order systems have been broadly used to investigate system stability,

observability and controllability [6–8]. The generalization of FoD have allowed it to flourish in many

fields of applications, such as control theory, communication systems and applied mathematics [9,10].

The singular (descriptor) fractional-order system of differential equations plays an important role

in many applications, such as electric networks, economics, optimization problems, analysis of control

systems, constrained mechanics, aircraft and robot dynamics, biology and large-scale systems [9,10].

Many continuous or discrete-time systems are usually described by complete dynamical states that

vary with time, which have wide applications in social sciences, chaotic systems, economics, electrical

networks, information theory and medical sciences [11–16]. Since the singular systems enjoy static and
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dynamic states, the complexity of their entropy depends on the methods of decomposing these states

from each other to completely identify the analytical solution of such systems.

The solution of singular systems with regular and singular pencils was discussed in references [17–21],

while the optimal solution of a class of singular linear systems of regular and singular pencils that have

non-consistent linear systems of nabla difference equations with non-consistent initial conditions was

discussed in reference [22]. The relationship between the solutions of an initial value problem of a

linear singular system of fractional nabla difference equations, its proper dual system and its transposed

dual system as well as introduced necessary and sufficient conditions for the existence and uniqueness

of their solution were thoroughly investigated in reference [23]. The initial value problem of a class

of non-homogeneous singular systems of fractional nabla difference equations with constant matrix

coefficients was investigated in reference [24], which considered two cases: square coefficient matrices with

a singular leading coefficient and regular pencils; and square and non-square matrices of singular pencils.

In this work, we only considered singular linear systems with regular pencils. The case of

the systems of singular pencils is left for further development. To find the general solution of

fractional-order singular systems, the Adomian Decomposition Method (ADM) [22,23] is extended

by first introducing the general solution of the regular commensurate fractional-order linear-time

invariant (FoLTI) continuous systems, which is described by the following general form:

Dα
x(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (1a)

y(t) = Cx(t) + Du(t), (1b)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the system states, the input, and output vectors,

respectively; while A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are the system constant matrices.

The ADM is extended here to obtain the solution of a singular FoLTI continuous system that has

the following general form:

EDα
x(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (2a)

y(t) = Cx(t) + Du(t), (2b)

where E ∈ Rn×n is a singular matrix; x(t) ∈ Rn is the pseudo-state; u(t) ∈ Rm is the control input;

y(t) ∈ Rp is the output; and A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n with rank C = p.

Definition 1. [24] The matrix pencil sE − A, where E and A ∈ Rn×q and for an arbitrary s ∈ C, is called:

(1) Regular when n = q and det (sE − A) 6= 0,

(2) Singular when n = q or n 6= q and det (sE − A) = 0.

In this work, we considered the class of regular pencils with a singular matrix E.

Singular fractional-order systems consist of coupled differential and algebraic equations. The control of

singular fractional-order systems is not well-flourished compared to that of the conventional dynamical

systems. However, it is possible to use the sequence of transformations to decouple the differential

and the algebraic parts of the system from each other, thus enabling the application of the standard

state–space control theory to a dynamical subsystem of a lower order [24–27].

There are three main steps used to decouple the system’s static and dynamic parts from each

other. The first one involves using the generalized Schur decomposition method, the second one

involves solving a coupled Sylvester equation and the third one involves constructing well-defined

transformation matrices [28,29]. The first step is thoroughly investigated using numerical linear algebra.

Various existing methods for transforming a matrix into a Jordan-Schur form and a matrix pencil into

a Weierstrass–Schur form have been investigated in reference [28]. These methods are extended to

extract the partial information that corresponds to the dominant eigenvalues from large-scale matrices
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and matrix pencils. The solution and perturbation analysis of a coupled Sylvester equation is presented

in reference [29]. The Schur method and the Hessenberg–Schur method are extended for a coupled

Sylvester equation, which is transformed into a standard Sylvester equation. This equation is solved

using standard techniques presented in [28,29].

This work is outlined as follows. In the next section, the necessary definitions and preliminaries

are introduced. Section 3 describes the ADM method. Section 4 introduces the solution of FoLTI

systems with regular pencils. A recursive method to decompose the singular systems is introduced in

Section 5, followed by numerical examples in Section 6. The summaries and concluding remarks are

presented in Section 7.

2. Basic Definitions and Preliminaries

The Caputo definition of fractional-order derivatives is adopted in this work. It is a modification of the

Riemann–Liouville definition and it has the advantage of only using the initial conditions that corresponds

to integer-order derivatives, which is suitable for most physical systems [30–32]. The following definitions

and preliminaries of fractional-order calculus are presented here for completeness.

Definition 2 [9,10]. Let f (t) be an integrable piecewise continuous function on any finite subinterval of

(0,+∞). Thus, the fractional integral of f (t) of order α is defined as:

Jα f (t) :=
tα−1

Γ(α)
× f (t) =

1

Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ, t > 0, α > 0. (3)

In this paper, we will use the following equality [20]:

Jαtµ =
Γ(µ + 1)

Γ(µ + α + 1)
tµ+α, α > 0, µ > −1, t > 0. (4)

Definition 3 [9,10]. The Caputo fractional-order derivative is defined as:

Dα f (t) =
1

Γ(M − α)

∫ t

0

f M(τ)

(t − τ)α+1−M
dτ, f M(τ) =

dM f (τ)

dτM
, (5)

where Γ(·) is the Gamma function and M − 1 ≤ α < M, M ∈ N.

Definition 4 [8]. The Mittag–Leffler function of two parameters is defined by:

Eα,β(t) = ∑
∞

k=0

tk

Γ(kα + β)
. (6)

Definition 5 [9]. The Mittag–Leffler matrix function of two parameters is defined by:

Eα,β(Atα) = ∑
∞

k=0

Aktαk

Γ(kα + β)
, (7)

where A ∈ Rn×n.

Definition 6 [31]. The system given by (1) or the pair (E, A) is said to be regular pencil if there exists a unique

solution x(t) for a given initial condition.

Lemma 1 [32]. The system described by (1) or the pair (E, A) is said to be a regular pencil if and only if

det(Esα − A) 6= 0, for s ∈ C.
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3. Solution of FoLTI Systems Using ADM Method

In this section, we used the ADM method to obtain the general solution of fractional-order state

equations of linear time-invariant continuous systems. See [25–27] for an overview of the ADM

technique. In the subsequent discussion, consider the linear system described by (1a) and assume the

definition of Caputo fractional-order derivative; i.e.,

Dα
x(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (8)

with the initial condition:

x(0) = v. (9)

Notice that applying Jα (i.e., fractional-order integration of order α) on both sides of system (8) yields:

x(t) = x(0) + AJα
x(t) + BJα

u(t). (10)

To use the Adomian decomposition method, we assume that the general solution of (8) takes the

general form of x(t) = ∑
∞
k=0 xk(t), in which:

x0(t) = v + BJα
u(t) (11)

and

xk(t) = AJα
xk−1(t), k ≥ 1. (12)

Now, from (11) and (12), one can obtain the following recursive formula for the system states:

x1(t) = Jα[Av + ABJαu(t)], x2(t) = J2α
[
A2v + A2BJαu(t)

]
, . . . , xk(t) = Jkα

[
Akv + AkBJαu(t)

]
. (13)

Therefore,

x1(t) =
Av

Γ(α+1)
tα + ABJ2αu(t), x2(t) =

A2v

Γ(2α+1)
t2α + A2BJ3αu(t), . . . ,

xk(t) =
Akv

Γ(kα+1)
tkα + AkBJ(k+1)αu(t).

(14)

Since the general solution x(t) = ∑
∞
k=0 xk(t), Equation (14) then yields:

x(t) = ∑
∞

k=0

(Atα)k

Γ(kα + 1)
v + ∑

∞

k=0
AkBJ(k+1)α

u(t). (15)

That is,

x(t) = ∑
∞

k=0

(Atα)k

Γ(kα + 1)
v + ∑

∞

k=0
AkB

1

Γ((k + 1)α)

∫ t

0
(t − τ)(k+1)α−1

u(τ)dτ. (16)

or,

x(t) = ∑
∞

k=0

(Atα)k

Γ(kα + 1)
v +

∫ t

0
∑

∞

k=0

Ak(t − τ)(k+1)α−1

Γ((k + 1)α)
Bu(τ)dτ. (17)

Alternately, in terms of the Mittag–Leffler matrix functions of (7), one may rewrite (17) as follows:

x(t) = Eα,1(Atα)v +
[
tα−1Eα,α(Atα)

]
[Bu(τ)]. (18)

Consequently, the general solution of system states, described by (8), can be written in the following

general form:

x(t) = φα0(t)v +
∫ t

0
φ
α
(t − τ)Bu(τ)dτ, x(0) = v (19)
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where

φα0(t) = Eα,1(Atα) =
∞

∑
k=0

(Atα)k

Γ(kα + 1)
, (20)

φ
α
(t) = tα−1Eα,α(Atα) = ∑

∞

k=0

Akt(k+1)α−1

Γ((k + 1)α)
. (21)

and the general solution of the system output is given by:

y(t) = C
{

Eα,1(Atα)v +
[
tα−1Eα,α(Atα)

]
[Bu(t)]

}
+ Du(t). (22)

4. The General Solution of FoLTI Singular Systems with Regular Pencils

The general solution of FoLTI singular continuous systems is usually obtained by first

transforming the system into the canonical form [33–35], which enables one to easily decompose

the static terms from the dynamic ones. The following lemmas are presented for completeness

to derive the general solution of the FoLTI singular systems with regular pencils. To simplify the

process of obtaining the general solution, the system matrices (E, A) with regular pencils may be both

transformed into a triangular form with the zero eigenvalues of E placed at the lower right block.

Lemma 2 [33]. Consider the following FoLTI singular continuous system:

EDα
x(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (23)

where E ∈ Rn×n is a singular matrix of rank n1 < n, x(t) ∈ Rn, u(t) ∈ Rm, and A ∈ Rn×n, B ∈ Rn×m..

If (23) is regular, there exist non-singular matrices P1, Q1 ∈ Rn×n, such that:

P1EQ1 =

[
E1 E2

0 E3

]
, P1 AQ1 =

[
J1 J2

0 J3

]
, (24)

where E1 ∈ Rn1×n1 is non-singular; E3 ∈ Rn2×n2 is an upper triangular matrix with all diagonal elements

being zero; J1 ∈ Rn1×n1 ; J3 ∈ Rn2×n2 is non-singular and upper triangular; and E2, J2 ∈ Rn1×n2 .

The generalized Schur decomposition given by (24) and the subsequent reordering of the diagonal

elements of E may be conducted using “qz” MATLAB function to construct E1 and J1 as upper

triangular matrices [32].

Lemma 3 [36]. Consider (24), then there exist matrices L, R ∈ Rn1×n2 , such that:

[
I L

0 I

][
E1 E2

0 E3

][
I R

0 I

]
=

[
E1 0

0 E3

]
(25)

and [
I L

0 I

][
J1 J2

0 J3

][
I R

0 I

]
=

[
J1 0

0 J3

]
. (26)

Lemma 4 [36]. Consider system (23), if this system is regular, then there exist non-singular matrices P, Q ∈ Rn×n

such that the transformation:

PEQQ−1Dα
x(t) = PAQQ−1

x(t) + PBu(t) (27)
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yields the following structure:

[
In1

0

0 N

]
Q−1Dα

x(t) =

[
F 0

0 In2

]
Q−1

x(t) +

[
H

K

]
u(t), (28)

where N ∈ Rn2×n2 is a nilpotent matrix, F ∈ Rn1×n1 ; and n1 is equal to the degree of the polynomial

det (Es − A), such that n1 + n2 = n, and where:

PEQ =

[
In1

0

0 N

]
, PAQ =

[
F 0

0 In2

]
, PB =

[
H

K

]
, (29)

where H ∈ Rn1×m, K ∈ Rn2×m and s ∈ C.

Proof. According to Lemma 1, let P1 and Q1 be matrices such that P = P3P2P1 and Q = Q1Q2, where:

P2 ≡

[
I L

0 I

]
, P3 ≡

[
E−1

1 R

0 J−1
3

]
, and Q2 ≡

[
I R

0 I

]
, (30)

where P2, P3, Q2 ∈ Rn×n. �

Now from Lemma 2, the matrices L and R satisfy:

PEQ =

[
I L

0 J−1
3 E3

]
, PAQ =

[
E−1

1 J1 R

0 I

]
, (31)

where N = J−1
3 E3 is a nilpotent matrix because E3 is an upper triangular matrix with zero diagonal

elements; while J−1
3 and J3 are both upper triangular matrices. The form of (28) is obtained by letting

F = E−1
1 J1.

Now consider system (2) with D = 0, i.e.,

EDα
x(t) = Ax(t) + Bu(t), 0 < α ≤ 1, x(0) = v (32)

y(t) = Cx(t) (33)

Let the system of (32) be regular. From Lemma 4, it follows that (32) can be rewritten as [37,38]:

[
In1

0

0 N

][
Dαw1(t)

Dαw2(t)

]
=

[
F 0

0 In2

][
w1(t)

w2(t)

]
+

[
H

K

]
u(t), (34)

w(t) = Q−1
x(t) ≡

[
w1(t) w2(t)

]T
, (35)

where w1(t) ∈ Rn1 ; w2(t) ∈ Rn2 ; and PB =
[

H K
]T

.

Thus, the following two subsystems are obtained:

Dα
w1(t) = Fw1(t) + Hu(t), (36)

NDα
w2(t) = w2(t) + Ku(t). (37)

Since x(0) = v, therefore:

w0 = Q−1
x(0) = Q−1

v ≡ [v0v1]
T , (38)

where v0(t) ∈ Rn1 and v1(t) ∈ Rn2 .
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The general solution of (36) is defined in terms of its fractional-order state equation (see (19)) as follows:

w1(t) = φα0(t)v +
∫ t

0
φ
α
(t − τ)Hu(τ)dτ, x(0) = v, (39)

where

φα0(t) = Eα,1(Ftα) = ∑
∞

k=0

(Ftα)k

Γ(kα + 1)
, (40a)

φ
α
(t) = tα−1Eα,α(Ftα) = ∑

∞

k=0

Fkt(k+1)α−1

Γ((k + 1)α)
. (40b)

The solution of subsystem (37) is obtained using the property of the nilpotent matrix N. Thus, there

are two cases to consider:

Case 1: N = 0,

In this case, w2(t) = −Ku(t). (41)

Case 2: N 6= 0,

To clarify this general case, let N2 = 0. Pre-multiplying the second row of (34) by N yields:

N2Dα
w2(t) = Nw2(t) + NKu(t). (42)

Now, differentiating both sides of (42) of order α (i.e., applying Dα to both sides) and using (35) yields:

w2(t) = −Ku(t)− NKDα
u(t) + N2D2α

w2(t). (43)

Since N2 = 0 by hypothesis, therefore:

w2(t) = −Ku(t)− NKDα
u(t). (44)

In general, since N is a nilpotent matrix, there exists an integer number l such that Nl = 0.

Now, pre-multiplying (34) by Nl−1 and using (35) yields:

w2(t) = −Ku(t)− ∑
l−1

j=0
N jKDjα

u(t). (45)

Substituting (40a) and (45) into (37) and (38) implies the following general solution of (34):

x(t) = Q

[
In1

0n2×n1

]
(φα0(t)v0 +

∫ t
0 φ

α
(t − τ)Hu(τ)dτ) + Q

[
0n1×n2

In2

](
−Ku(t)− ∑

l−1
j=0 N jKDjαu(t)

)
, (46a)

where

φα0(t) = Eα,1(Ftα) =
∞

∑
k=0

(Ftα)k

Γ(kα + 1)
, (46b)

φ
α
(t) = tα−1Eα,α(Atα) = ∑

∞

k=0

Akt(k+1)α−1

Γ((k + 1)α)
. (46c)

Finally, the solution of y(t) follows directly from (46a) and (34).

5. Recursive form of FoLTI Systems with Regular Pencils

A recursive solution of FoLTI systems with regular pencils is first investigated by considering

the unforced system (homogeneous) of (32) and by using proper Schur transformation matrices.

The following theorem outlines the main results of this work.
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Theorem 1. Consider a FoLTI homogeneous singular system with regular pencils of the following form:

EDα
x(t) = Ax(t), 0 < α ≤ 1, (47a)

y(t) = Cx(t), (47b)

where E ∈ Rn×n is a singular matrix of rank n − d < n; x(t) ∈ Rn; y(t) ∈ Rp; A ∈ Rn×n; C ∈ Rp×n with

rank C = p; and with an initial condition x(0) = v. Let Aλ ≡ (A − λαE)−1 A, Eλ ≡ (A − λαE)−1E; and let

Q =
[

Qs Q̃s

]
∈ Rn×n be a unitary matrix such that Eλ = QTQ∗ =

[
Qs Q̃s

][ Gs Ds

0 Ns

][
Qs

∗

Q̃s
∗

]
,

where Gs ∈ Rn−d×n−d is an invertible matrix and Ns ∈ Rd×d is a nilpotent matrix, which has all the zero

eigenvalues of Eλ. Therefore, the general solution of (47) can be expressed as:

x(t) = QsEα,1

((
Gs

−1 + λα I
)

tα
)

Qs
∗

v = Qs

[
∞

∑
k=0

((
Gs

−1 + λα I
)
tα
)k

Γ(kα + 1)

]
Qs

∗
v (48)

and

y(t) = Cx(t).

Proof. The general solution of (47) can be obtained by transforming it into a recursive form using the

Schur factorization structure. Since the pair (E, A) is assumed to be a regular pencil, from Lemma 1,

there exists some λ ∈ C such that A − λαE is invertible, which implies that det(A − λαE) 6= 0.

Since Aλ ≡ (A − λαE)−1 A, and Eλ ≡ (A − λαE)−1E by hypothesis, pre-multiplying (47a) by

(A − λαE)−1 yields:

(A − λαE)−1EDα
x(t) = (A − λαE)−1 A x(t). (49)

System (47) can be rewritten as:

EλDα
x(t) = Aλx(t). (50)

Since

Aλ= (A − λαE)−1 A =(A − λαE)−1(A − λαE + λαE) = I + λαEλ, (51)

Then (50) is defined as:

EλDα
x(t) = (I + λαEλ)x(t). (52)

Now, since Eλ = QTQ∗ =
[

Qs Q̃s

][ Gs Ds

0 Ns

][
Qs

∗

Q̃s
∗

]
by hypothesis, which is verified in [35],

one may decompose the system states of (47a) to obtain:

x(t) = Qsx1(t) + Q̃sx2(t), (53)

where x1 ∈ Rn−d, x2 ∈ Rd; d > 0.

Substituting (53) into (52) gives:

Eλ

[
Qs Q̃s

]
Dα

[
x1(t)

x2(t)

]
= (I + λαEs)

[
Qs Q̃s

][
x1(t)

x2(t)

]
. (54)

Moreover, applying the Schur decomposition on (52) yields:

[
Qs Q̃s

][ Gs Ds

0 Ns

][
Qs

∗

Q̃s
∗

][
Qs Q̃s

][ Dαx1(t)

Dαx2(t)

]
=
[

Qs Q̃s

][
x1(t)

x2(t)

]
+
[

Qs Q̃s

][ λαGs λαDs

0 λαNs

][
Qs

∗

Q̃s
∗

][
Qs Q̃s

][
x1(t)

x2(t)

]
(55)
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which leads to:

[
Qs Q̃s

][ Gs Ds

0 Ns

][
Dαx1(t)

Dαx2(t)

]
=
[

Qs Q̃s

][
x1(t)

x2(t)

]
+
[

Qs Q̃s

][ λαGs λαDs

0 λαNs

][
x1(t)

x2(t)

]
. (56)

Now, since Q =
[

Qs Q̃s

]
is invertible, we obtain:

[
Gs Ds

0 Ns

][
Dαx1(t)

Dαx2(t)

]
=

(
I +

[
λαGs λαDs

0 λαNs

])[
x1(t)

x2(t)

]
(57)

Thus, (57) yields the following coupled equations:

GsDα
x1(t) = (1 + λαGs)x1(t) + λαDsx2(t), (58)

NsDα
x2(t) = (1 + λαNs)x2(t). (59)

Since Gs is invertible, (58) can be rewritten as:

Dα
x1(t) =

(
Gs

−1 + λα I
)

x1(t) + λαGs
−1Dsx2(t). (60)

Moreover, since Ns is a nilpotent matrix with Ns
d = 0, pre-multiplying (59) by Ns

d−1 implies:

0 = Ns
dDα

x2(t) =
(

Ns
d−1 + λαNs

d
)

x2(t) = Ns
d−1

x2(t). (61)

This implies that Ns
d−1Dαx2(t) = 0. Again, we have:

0 = Ns
d−1Dα

x2(t) =
(

Ns
d−2 + λαNs

d−1
)

x2(t) = Ns
d−2

x2(t). (62)

This also implies that Ns
d−2Dαx2(t) = 0. Repeating this process with decreasing powers of Ns

eventually leads to x2(t) = 0 for all t. Therefore, the subsystems (59) and (60), respectively, become:

Dα
x1(t) =

(
Gs

−1 + λα I
)

x1(t) (63)

and

x2(t) = 0. (64)

Obviously, according to the Schur basis of (53) and from (19–21), the recursive solution of (63) is given by:

x(t) = QsEα,1

((
Gs

−1 + λα I
)

tα
)

Qs
∗

v = Qs

[
∞

∑
k=0

((
Gs

−1 + λα I
)
tα
)k

Γ(kα + 1)

]
Qs

∗
v (65)

and

y(t) = Cx(t). (66)

Hence, the general solution (65) of the singular FoLTI systems with regular pencils is

completely identified. �

6. Illustrative Examples

To illustrate the main ideas of this work, this section includes two numerical examples to highlight

the main ideas of the proposed approach of solving singular FoLTI continuous systems.
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Example 1. Consider the following singular FoLTI system, where R and L are constants, while u(t) is an input signal:

LDαx3(t) = u(t), (67a)

Rx2(t) = u(t), (67b)

x1(t)− x2(t)− x3(t) = 0. (67c)

One may rewrite system (67) in the following form:




0 0 L

0 0 0

0 0 0


Dα




x1(t)

x2(t)

x3(t)


 =




0 0 0

1 −1 −1

0 −R 0







x1(t)

x2(t)

x3(t)


+




1

0

1


u(t), (68)

where:

E =




0 0 L

0 0 0

0 0 0


, A =




0 0 0

1 −1 −1

0 −R 0


, and B =




1

0

1


. (69)

Obviously, E is singular since det E = 0. However, the pencil (E, A) is regular, because:

det(Eλα − A) =

∣∣∣∣∣∣∣

0 0 Lλα

−1 1 1

0 R 0

∣∣∣∣∣∣∣
= −RLλα 6= 0. (70)

From (46), the solution of system (68) is obtained as follows:

Let P =




1
L 0 0

0 0 −1
R

0 1 −1
R


, and Q =




1 0 1

0 1 0

1 0 0


; Q−1 =




1 0 1

0 1 0

1 0 −1


. (71)

It follows that:

PEQ =




1 0 0

0 0 0

0 0 0


, PAQ =




0 0 0

0 1 0

0 0 1


, PB =




1
L
−1
R
−1
R


. (72)

From (28), system (69) can be transformed to the following form:




1 0 0

0 0 0

0 0 0







1 0 1

0 1 0

1 0 −1


Dα




x1(t)

x2(t)

x3(t)


 =




0 0 0

0 1 0

0 0 1







1 0 1

0 1 0

1 0 −1







x1(t)

x2(t)

x3(t)


+




1
L
−1
R
−1
R


u(t). (73)

In light of (34) and (35), further transformation of (73), respectively, yields:




1 0 0

0 0 0

0 0 0


Dα

[
w1(t)

w2(t)

]
=




0 0 0

0 1 0

0 0 1



[

w1(t)

w2(t)

]
+

[
H

K

]
u(t) (74)

with

w(t) =




1 0 1

0 1 0

1 0 −1







x1(t)

x2(t)

x3(t)


,

[
H

K

]
=




1
L
−1
R
−1
R


. (75)

Thus:

Dαw1(t) = Dαx3(t) =
1
L u(t) , (76a)
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w2(t) =

[
x2(t)

x1(t)− x3(t)

]
= −

[
−1
R
−1
R

]
u(t). (76b)

Using (40), the general solution of (67) is given by:




x1(t)

x2(t)

x3(t)


 =




1
R u(t) + x3(0) +

1
LΓ(α)

∫ t
0 (t − τ)α−1u(τ)dτ

1
R u(t)

x3(0) +
1

LΓ(α)

∫ t
0 (t − τ)α−1u(τ)d


 (77)

Example 2. Consider system (47) for 0 < α ≤ 1 where:

E =




1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0


, A =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1


, C = [1 0 1 0], (78)

subject to the initial condition

x(0) = v =




1

1

0

1


. (79)

Notice that E is a singular matrix since det E = 0, and the pencil (E, A) is regular, because:

det(A − λαE) =

∣∣∣∣∣∣∣∣∣

−λα 0 0 0

1 0 −λα 0

0 1 0 0

0 0 0 1

∣∣∣∣∣∣∣∣∣
= −λ2α 6= 0. (80)

Observe that (78) represents the parameters of a singular FoLTI regular system. If follows from (52) that:

Es = (A − λαE)−1E =




− 1
λα 0 0 0

0 0 1 0

− 1
λ2α 0 − 1

λα 0

0 0 0 0


. (81)

Thus, the Schur factorization for Es is:

Q =




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


, T =




−1
λα

−1
λ2α 0 0

0 −1
λα 0 0

0 0 0 0

0 0 0 0


, Q∗ =




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


. (82)

That is:

Qs =




0 1

0 0

1 0

0 0


, Q̃s =




0 0

1 0

0 0

0 1


, Gs =

[
−1
λα

−1
λ2α

0 −1
λα

]
, Ds = Ns =

[
0 0

0 0

]
. (83)

Moreover:
(

Gs
−1 + λα I

)
tα =

[
0 tα

0 0

]
. (84)
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Using (65), the general solution is given by:

x(t) = QsEα,1

((
Gs

−1 + λα I
)

tα
)

Qs
∗

v =




0 1

0 0

1 0

0 0







∞

∑
k=0

[
0 tα

0 0

]k

Γ(kα + 1)




[
0 0 1 0

1 0 0 0

]



1

1

0

1


. (85)

Now, since: [
0 tα

0 0

]k

= 0, k = 2, 3, 4, . . . (86)

Thus, (85) reduces to:

x(t) =
[

0 0 tα

Γ(α+1)
0
]T

(87)

Finally, from (77) and (87), y(t) = Cx(t) = tα

Γ(α+1)
.

7. Conclusions

The general solution of FoLTI continuous systems is introduced in the sense of the Caputo

definition of fractional order derivative using the Adomian Decomposition Method (ADM). The same

approach is extended to obtain the general solution of singular FoLTI continuous systems with regular

pencils. This approach benefits from the structure of the canonical form of the system state matrices.

Using the Schur decomposition, the system matrices were transformed to separate the static variables

from the dynamic variables. Hence, a recursive technique is implemented to uniquely define the

general solutions of both the dynamic and the static parts of the system. The case of singular FoLTI

systems with singular pencils is left for further development.
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